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Abstract

Conditions are investigated for exponential convergence of the tracking error in feedforward
adaptive systems without persistent excitation. Particular attention is paid to the adap-
tive gradient algorithm in the overparametrized case. A main result is that for a bounded
periodic regressor, the tracking error converges exponentially without regard to parameter
convergence or to the degree of overparametrizati on, These results remove the persistent
excitation (PE) conditions and parameter convergence conditions previously thought nec-
essary to ensure exponential tracking error convergence in this class of systems.

1 Introduction

Persistent excitation (PE) conditions which ensure
gorithms have been studied by many researchers.
and Bohlin [1] where the PE condition is expressed
autocorrelation  function formed from the regressor.

parameter convergence in adaptive al-
Early results can be found in Astrom
in terms of positive definiteness of the
Subsequently, Bitmead and Anderson

[4] proved that parameter convergence is e&nentid  whe~ PE ;onditions  are satisfied in
the adaptive gradient algorithm and the normalized adaptive gradient algorithms, Explicit
upper and lower bounds on the exponential response can be found in [13], A general dis-
cussion of the PE condition is given in [3] and an effort to unify many definitions can be
found in [15],

One important consequence of exponential parameter convergence, is that the tracking
error (which is linear in the parameter error) also converges exponentially, This relation-
ship gives the (false) impression that exponential tracking error convergence requires the
same stringent PE conditions as parameter convergence, Interestingly, there are several
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indications to the contrary. Using an approximate linear analysis, Glover [6] indicated as
early as 1977 that exponential convergence of the tracking error is possible in the feed-
forward adaptive gradient algorithm with tap delay line basis functions, and sinusoidal
excitation, without any conditions on parameter convergence, More recently, Johansson [9]
used a complete end-to-end Lyapunov analysis to demonstrate exponentitd tracking error
convergence (to a bounded set) for an MRAC algorithm without persistent excitation or
parameter convergence,

Motivated by Glover’s approach, this paper investigates exponential convergence of the
tracking error in adaptive feedforward systems, without regard to parameter convergence,
A main result of the paper is that for any bounded periodic regressor, ihe tracking erro?
associated with the adaptive gradient algorithm converges exponentially wiihout  ‘any FE
condition. This result is important, because in many applications good tracking perfor-
mance is required while it is not desirable or even possible to satisfy PE conditions [12],
The new analysis extends Glover’s  result by removing the need to use a tap delay line basis
in the analysis (in fact, any method which generates a periodic regressor can be used).
Ibrthermore,  the new analysis is czact for finite-length regressors, in contrast to Glover’s
analysis which is only approximate unless the regressor is infinitely long,

A numerical example is given to demonstrate the usefulness of the exponential con-
vergence results in the context of adaptive harmonic noise cancellation, The new results
are critical in the case where the disturbance frequencies are not known a-priori, since the
regressor must be overparametrized and the usual PE properties are lost.

In Section 2 the adaptive gradient algorithm is reviewed. Convergence properties are
reviewed in Section 3 and new results pertaining to exponential tracking error convergence
are presented, A numerical example is given in Section 4, which verifies the exponentitd
nature of the error convergence amd accuracy of the analytic bounds,

2 Adaptive Gradient Algorithm

Let the y(t) ~ RI and z(t) E RN, be known signals and assume there exists a constant
parameter vector w“ E RN such that,

for all t >0, Uniqueness of w“ is not
An estimate j of y is constructed as,

y(i) == u)%(t)

required (i.e., the system can be

; = U@)%(t)

where w(t)  is an estimate of too, tuned in real-time using the adaptive
[10],

Lb = pz(i)e(t)
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with adaptation gain p > 0, The tracking error is defined as,

c(t) = y(t) – ~(i)

and the parameter error is defined as,

~(t) == w“ - w(t)

Using (1)(2)(4)(5), the tracking and parameter errors can be related as follows,

e = f#Tx(t)

(4)

(5)

(6)

Assuming that the
from (3)(5) that,

true parameter w“ does not vary with time, (i.e., w“ = O), it follows

$ = ti” - ti = -pze  = -pzz”~ (’7)

This equation characterizes the propagation of the parameter error.

3 Exponential Convergence Properties

It is convenient at this point to review a well-known stability argument, Define the Lya-
punov function candidate, .

(8)

Taking the derivative of (8) and using (l)-(7) yields,

v= –peq$Tx  = -pe2 ~ O (9)

This proves that # remains bounded. If x is bounded, then from (6) the error e remains
bounded. Furthermore, if i is bounded, then V is bounded, V is uniformly continuous,
and Barbalat)s lemma ([1 O], pg. 85, and 276), can be applied to ensure that lim~+w e = 0,
This well known argument ensures that the error converges to zero as desired.

While the above argument ensures that e converges to zero, it does not indicate how fast
it converges, Additional conditions can be imposed which ensure exponential convergence
of c to zero. For example, if z(t) is a periodic function with period ?’., then it is well known
(cf., [10][1 l]), that the existence of some @l, PL >0 such that the following PE condition
holds,

i&I< M < P21 (lo)
where M is the correlation matrix,

(11)
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ensures that the error e converges exponentially: specifically, there exists constants CO ~
0, a >0 such that,

ICI < q)c-”’ (12)

Precise expressions can be found for a in terms of /?l,  /?z, p and TO (i.e., set 6 = TO,
al=/?l” TOandaz = /?z “ TO in Lemma A.1 of Appendix A). In the case where p is small,
these expressions simplify to,

CY 2 /L/3~ (1.3)

It is shown in this paper that while the PE condition (10) is required for exponential
parameter convergence, it is overly restrictive for exponential tracking error convergence,
Specifically, the main result proves that for z bounded and periodic, the convergence of e to
zero is generically exponential without any condition on M. For example, in the important
case where A4 is singular, it will be shown that an exponential convergence rate of the form
(13) still holds, but with & replaced by the smallest nonzero  eigenvalue  of A4.

The main result of this paper is given next.

THEOREM 1 Assume there exists a wo E ItN such that (1) holds for all t ~ O, a n d
that the adaptive gradient algorithm (2)-( ’7) is used to tune w, giving the following error
system,

e = ~Tx (14)

d== –/LXXT(j (15)

Let z(t) E ltN be a bounded periodic function oft z O, with period TO, i.e.,

I\z(t)l/ < q < cm; for all i! >0— — (16)

z(t + TO) = z(t); for all t ~ o (17)

and let the eigenvector decomposition of its correlation matrix be defined as,

(18)

All = diag{A1,.,.,  &} >0 (19)

where PT = P-], and, Al 2.,.  ~ & >0,

Then,

(i) The error system (14)(15) can be written equivalently as the reduced system,

e == ?fzl

?j = –}LZl zfrl

(20)

(21)
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(22)

where,
z =: PTX; ~ = pT~ (23)

w+:;]; ,(,)= [:$11 (24)

and z], r] G Rn and 2 2, r2 ~ R*-n. The smallest nonzero eigenvalue  An > 0 always exists
unless x = O, e S O, i.e., the regressor z and error e vanish identicaUy.

(ii) The tracking error e and reduced parameter error rl converge to zero exponentially
as,

llr~J/  < qe-~f (25)

Ic] ~ ~qe-a’ (26)

where,
1

CY
( )

—  i n  —~—-
= 2T0 l–as

(27)

(28)

(29)

Letting p be sufficiently small (i.e., such that p << l/( AI TO<t~)),  gives,

P R O O F :

Proof of (i): First consider the trivial case where A4 == O. Then from (18), z = O, ZMIC1

from (14) the error e vanishes identically.

Now consider the nontrivial case where &f # O. Then the eigenvalue decomposition
(18) exists with some nonzero diagonal matrix All >0. Using the transformed vectors z
and r, the error equation (14) can be written as follows,

(32)

Note that the error is simply the sum of the errors projected into two orthogonal subspaces,
The correlation matrix of the transformed regressor z in (23) can be computed as,

1 To
/Eo J [1

zzTdr = PT(~ ‘0  z~Tdr)P  =  ‘~1 :
To O

(33)
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which implies from the partitioned structure of z in (24) that,

(34)

2Jt) = o (35)

Substituting (35) into (32) gives the desired result (20). Note that the fact that Z1 is
identically zero implies that the excitation in regressor z = P~x  has been %quashed”
completely into the smaller vector Z1 which by (34) is persistently exciting, Using (34),
the correlation matrix of z] can be conveniently bounded from above and below as given
in (22).

A similar reduction can be shown for the transformed parameter error r in (23). Spec.if-
icall y, multiplying both sides of (15) on the left by PT gives,

(36)

Substituting (23)(32)(35) into (36) gives,

which can be partitioned using (24)(35) as,

+1 == –/42, Z:r, (38)

+2=0 (39)

Equation (38) is precisely (21) as desired.

Proof of (ii) Since the reduced regressor ZI in (22) is persistently exciting, it follows
that the reduced error system (20)(21) converges exponentially. In light of bounds in (22),
Lemma A.1 of Appendix A can be applied with al = AmTO, a2 = AI TO, and 6 = TO to give
results (25)-(30) as desired, n

REMARK 1 Theorem 1 implies that the standard PE condition (10)(11) is overly re-
strictive, In particular, if the regressor x is bounded and periodic, the convergence of the
tracking error e to zero is generically exponential without any condition on M.

The most useful case is when M is singular for which the standard PE condition (10)
fails to hold, yet a smallest nonzero eigenvalue  A.(M) >0 of M = MT always exists, thus
determining the rate of exponential convergence by the new conditions (25)-(30). (The
trivial case where M = O is uninteresting since the tracking error is identicdy  zero).

REMARK 2 Intuitively, the persistent excitation conditions are eliminated in Theorem 1
by avoiding the need for convergence of the full parameter vector w in the proof, Rather, the



“degree” to which the given regressor z is persistently exciting is indicated by the number n
of nonzero eigenvalues  of M. The parameter error vector @ is transformed and partitioned
to become the vector r = [r:,  r~]~ such that rz G RN-’ is defined on a subspace which is not
updated due to zero excitation, while in contrast r l c R’ is defined on a subspace  which
is excited persistently, Since the regressor z] associated with rl is persistently exciting,
the reduced error vector rl converges exponentially, which from (20) ensures exponential
convergence of e,

4 Numerical Example

An adaptive noise suppression example is given in this section demonstrating exponential
tracking error convergence without persistent excitation, The set-up for the example in
shown in Figure 1 using a Tap Delay Line with N taps, and delay T. Here, N = 50 param-
eters  (i.e., taps) will be used to track m = 2 sinusoids. It is emphasized that this problem
is heavily overparametrized since parameter convergence, according to the standard PE
condition (10), requires at least N/2=25 sinusoids.

Measured Signal Disturbarm

@4sw++,) TDL Y=; WW+W)

1
Regraasor

~-lr x
...

~-wk?
Adaptive Gradient

Y

e z i’ ~ +
c%a w

Figure 1: Configuration for adaptive noise suppression using a tap delay-line basis

Let  y be a sum of two tones,

Y ~ ~in(~,t)  + S~rL(W~~) (40)

where WI = 27r “ 25, tiz = 27r , 50, and let the excitation signal f be given as,

~== Alsirz(ult  - 7r/4)  + A2sin(u2t  - 7r/4) (41)

where A 1 = Az = W. Let the tap delay line bmis be overparametrized with IV = 50 taps
and tap delay T’ = .004. The adaptive gradient algorithm (1)-(7) is used to tune the error
to zero, using an adaptive gain of p = ,1. A simulation of the response is shown as the
solid line in Figure 2,

,
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Figure2:  Exponential tracking error response from tl]e adaptive gradient algorithm with
heavily overparmetrized  tap delay line (N = 50 taps and m = 2 sinusoids).



The exponential convergence rate from Theorem 2 is calculated as a = 2.5000, and the
theoretical bound on e is shown as the dotted line in Figure 2. It is seen that the theoretical
exponential overbound on the response is quite accurate,

In a 1977 paper [6], Glover studied the mapping from y to e in the LMS algorithm with
a tap delay line basis, The LMS algorithm is the discrete-time equivalent of the adaptive
gradient algorithm. Glover argues that for a sufficiently large number of taps, this mapping
can be approximated as the linear time-invariant system, (specialized here to the case of
two tones, and converted to continuous-time),

(.’ + (/);)(s2 + @)______.— .
e=—

( )
Y (42)

(S2 + LO:)(S2 + LO;) + $ A~(s3 + @S) + A:(s3 + WfS)

Note the nice interpretation of (42) as a stable double notch filter at precisely the frequencies
of the disturbance. For the present example the closed-loop poles are located at, (–2.4992,A
314.10j),  (–2.5008+157.09j),  Hence, Glover’s  approximate analysis predicts an exponential
convergence with a rate which is determined by the real part – 2.4992 of the lead d~ped
pole, or equivalently a = 2.4992, This value agrees quite well with the value a = 2,5000
determined using the exact analysis of Theorem 2, which in turn agrees very well with the
simulation results.

5 Conclusions

It is well known that PE conditions are required to ensure exponential convergence of th e
parameter error in adaptive systems, This coupled with a boundedness condition on the
regressor ensures exponential convergence of the tracking error. However, in many applica-
tions one is only interested in the convergence of the tracking error. In such applications the
PE conditions are unnecessarily stringent, In particular, the present paper shows that if the
regressor is bounded and periodic, tracking error convergence in the gradient adaptation
algorithm is generically exponential without regard to PE conditions.

In applications such as feedforward cancellation of harmonic disturbances (i.e., vibration
damping, noise cancellation, etc.). the frequencies of the harmonic disturbances may be
either known or unknown a-priori. When the disturbance frequencies are known (say there
are m of them), it is often possible to construct a regressor of size 2m which satisfies the
PE conditions directly, and hence ensures exponential convergence. However, in the more.
common and useful case where the frequencies are not known a-priori, overparametrization
is an essential tool to construct a regressor (of size larger that 2m), which ensures a set of
basis functions which is adequate over the entire freguency range of disturbances which may
be encountered, Hence, the main results of this paper indicate that exponential convergence
is retained in this important case,
performance in such applications,

and motivates using overparmnetrization

9

without l&s of



For concreteness, a numerical example was given in which a regressor with 50 taps
is used to track only 2 sinusoids, Standard PE conditions areclemly violated, yet the
mnvergence  is exponential with a rate which agrees quite nicely with the new theory.

In the present paper, the assumption that the regressor z is periodic is somewhat
restrictive. Fkture efforts will be timed at relaxing this condition to include almost-periodic
functions and possibly more generalized signals such as the Yuan-Wonham  class [15].

Acknowledgements

This research was performed at the Jet Propulsion Laboratory, California Institute of Tech-
nology, under contract with the Natiomd Aeronautics amd Space Administration.

A APPENDIX A

LEMMA 1 (Sastry and Bod90n /11/) Consider the error equation,

e = gFz (1)

d= -pzxTq$ (2)

where ~(t), x(t) E W. Let z be a bounded piecewise continuous function of t such that,

I/z(t)/l < q < cm; for all t > (1 (3)

and let there exist constants al, Q2, 6> 0 such that the following PE condition is satisfied,

al K/’+”’2w@di <0’21,  forall,>o
t

(4)

Then the system (l)(2) is globally exponentially stable, i.e.,

Iel < COqC-a’ (6)

where,
1 1

( )
C t ’ = - i n  - — _

2C5 1–CY3 (i’)

1
( )

i
co= —

l–as “ 114(0)11 @)

2p@~.—. -—
a’= (1 + pcqfi)~

(9)
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Letting p be sufficiently small (i.e., such that p << I/( QZ@)),  gives,

CY E /Lcrl/b (lo)

@ H(1 +W’l)IM(0)II (11)

PROOF: The proof follows directly from the development in Sastry and Bodson  [11] pg.
73-?5 (see in particular Theorem 2.5.3) specialized to the gradient  adaptation algorithm
(l)(2).
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